Investigating Small-Scale Air–Sea Exchange Processes via Thermography
نویسندگان
چکیده
The exchange of trace gases such as carbon dioxide or methane between the atmosphere and the ocean plays a key role for the climate system. However, the investigation of air–sea gas exchange rates lacks fast and accurate measurement techniques that can also be used in the field, e.g., onboard a ship on the ocean. A promising way to overcome this deficiency is to use heat as a proxy tracer for gas transfer. Heat transfer rates across the aqueous boundary layer of the air–water interface can be measured via thermography with unprecedented temporal and spatial resolution in the order of minutes and meters, respectively. Either passive or active measurement schemes can be applied. Passive approaches rely on temperature differences across the water surface, which are caused naturally by radiative and evaporative cooling of the water surface. Active measurement schemes force an artificial heat flux through the aqueous boundary layer by means of heating a patch at the water surface with an appropriate heat source, such as a CO2 laser. The choice of the excitation signal is crucial. It is beneficial to apply periodic heat flux densities with different excitation frequencies. In this way, the air–water interface can be probed for its response in terms of temperature amplitude and phase shift between excitation signal and temperature response. This concept from linear system theory is also well established in the field of non-destructive material testing, where it is known as lock-in thermography. This article gives a short introduction into air–sea gas exchange, before it presents an overview of different thermographic measurement techniques used in wind-wave facilities and at sea starting with early implementations. The article closes with a novel multifrequency excitation scheme for even faster measurements.
منابع مشابه
Comparative heat and gas exchange measurements in the Heidelberg Aeolotron, a large annular wind-wave tank
A comparative study of simultaneous heat and gas exchange measurements was performed in the large annular Heidelberg Air–Sea Interaction Facility, the Aeolotron, under homogeneous water surface conditions. The use of two gas tracers, N2O and C2HF5, resulted not only in gas transfer velocities, but also in the measurement of the Schmidt number exponent n with a precision of ±0.025. The original ...
متن کاملComparative heat and gas exchange measurements in the Heidelberg Aeolotron, a large annular wind-wave tank
A comparative study of simultaneous heat and gas exchange measurements was performed in the large annular Heidelberg Air-Sea Interaction Facility, the Aeolotron, under homogeneous water surface conditions. The use of two gas tracers, N2O and C2HF5, resulted not only in gas transfer ve5 locities, but also in the measurement of the Schmidt number exponent n with a precision of ±0.025. The origina...
متن کاملThe role of sea spray in cleansing air pollution over ocean via cloud processes.
Particulate air pollution has been shown to strongly suppress precipitation from convective clouds over land. New observations show that precipitation from similar polluted clouds over oceans is much less affected, because large sea salt nuclei override the precipitation suppression effect of the large number of small pollution nuclei. Raindrops initiated by the sea salt grow by collecting smal...
متن کاملCapabilities of data assimilation in correcting sea surface temperature in the Persian Gulf
Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...
متن کاملCapabilities of data assimilation in correcting sea surface temperature in the Persian Gulf
Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...
متن کامل